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High-resolution, high-Reynolds-number numerical solutions of fully three- 
dimensional, decaying, geostrophic turbulence are examined. The results include the 
demonstration of a substantial degree of similarity between geostrophic and two- 
dimensional turbulence : transfer of energy to larger scales ; transfer of potential 
enstrophy to smaller scales ; vanishing energy dissipation as the Reynolds number 
increases ; the emergence and growth to dominance of isolated, coherent vortices ; 
and a competition between the vortices and Rossby waves, with an associated 
horizontal anisotropy when the latter are dominant. Properties that are distinct to 
geostrophic turbulence include the following : approximate three-dimensional 
wavenumber isotropy, with significant departures on large scales due to boundedness 
of the domain and on smaller scales due to anisotropic spectrum transfer rates; 
insensitivity of solution properties to anisotropy or vertical inhomogeneity in the 
dissipation ; persistence of vertical inhomogeneity ; development of inhomogeneity 
due to solid vertical boundaries; and the processes of alignment, attachment, and 
vertical straining associated with the finite vertical extent of the coherent vortices. 

1. Introduction 
Large-scale atmospheric and oceanic fluid motions are usually approximately 

geostrophic due to the influence of planetary rotation. An idealization of this regime 
is weakly dissipative flow in a stably stratified fluid in a rapidly rotating domain. A 
parametric specification is Reynolds number large, Rossby number (R = U / f L )  
small, Richardson number (Ri = ( N H / U ) 2 )  large, and Burger number ( B  = R2Ri) not 
too small. (U is a characteristic horizontal velocity, H and L are vertical and 
horizontal lengths, f is a Coriolis frequency (rotation rate), and N is a Brunt-Vaisala 
frequency (stratification strength) .) Advectively controlled flow with limited 
predictability in this regime is called geostrophic turbulence. 

The principal antecedents of the present investigation of fully three-dimensional 
geostrophic turbulence are Charney (1971), Herring (1980), and Hua & Haidvogel 
(1986). Charney noted the formal analogy with two-dimensional turbulence, and, on 
the basis of the coordinate symmetries and inviscid conservation laws, he proposed 
the occurrence of inverse cascade of energy (transfer to larger scales), forward 
cascade (transfer to smaller scales) of potential enstrophy (volume-mean-square 
potential vorticity), three-dimensional isotropy (i.e. energy and enstrophy spectra 
independent of wavenumber direction, once the vertical coordinate has been rescaled 
by N / f  ), and the associated energy equipartition (potential energy equal to half the 
kinetic energy). Herring investigated these proposals in an initial-value problem for 
a statistical closure model, and generally confirmed them. Hua & Haidvogel drew 



200 J .  C. McWilliams 

similar conclusions from intermediate-resolution computational solutions for 
equilibrium geostrophic turbulence sustained by a mean flow with vertical shear. In  
addition, there have been many other investigations of the processes in geostrophic 
turbulence in models with low vertical resolution, typically one or two vertical 
degrees of freedom; these studies are discussed in review articles by Rhines (1979), 
Salmon (1982), McWilliams (1983), and Holloway (1986). 

The present study is of initial-value problems with slowly decaying energy (large 
Reynolds number), based upon computational solutions of unprecedentedly high 
resolution, in all three spatial dimensions. The principal issues, partly inherited from 
the antecedent studies, are the following : - 

the dynamical similarities between two-dimensional and geostrophic 
turbulence ; 
spectrum transfers of energy and potential enstrophy ; 
three-dimensional isotropy and equipartition ; 
vertical inhomogeneity ; 
vertical boundary effects ; 
anisotropic and vertically inhomogeneous dissipation ; 
coexistence of turbulence and Rossby waves (supported by a spatial gradient 

the emergence of and eventual dominance of the flow by isolated, coherent 
vortices. 

i n f ) ;  

The latter has been shown to occur in two-dimensional turbulence (McWilliams 
1984; Herring & McWilliams 1985; Benzi, Patarnello & Santangelo 1988), and a 
principal result of this study is that it occurs in geostrophic turbulence as well. 

2. Posing the problem 
The governing quasi-gemtrophic equations are asymptotically valid as R + 0. 

After non-dimensionalization by H ,  L, U ,  N ,  and f scales (in particular, the timescale 
is L I U ) ,  the potential vorticity equation is 

where the potential vorticity is defined by 

q = 5+% 
with components 

Respectively, these are the vertical component of vorticity and the contribution 
from vortex stretching in the vertical. The vertical direction is parallel to the axis of 
rotation and the acceleration of gravity. The Coriolis frequency is 

f = 1+RP(y--),  (4) 

where P represents its spatial gradient (note that J(jl.,f/R) = /?a$/ax is O(1) as 
R+O). @ is the stream function, and it is related to the horizontal velocity com- 
ponents by 
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The operator J in (1)  is the horizontal Jacobian, and it represents horizontal 
advection. N ( z )  is the non-dimensional Brunt-Vaisala frequency (i.e. the vertical 
gradient of the mean density profile). 

t is the temporal coordinate. The horizontal coordinates are x and y, their range is 
[0,2xJ, and the lateral boundary condition is periodicity. The vertical coordinate is 
x ,  its range is [0, E], and the vertical boundaries are rigid, uniform-density surfaces, 
viz . 

(6) 

An alternative choice of a vertical boundary condition of periodicity would be 
analogous to the horizontal one and would be somewhat more conducive than (6) to 
three-dimensional isotropy and vertical homogeneity. However, the rigid-lid 
condition is preferred because it is more geophysically relevant (the ocean and 
atmosphere are vertically bounded on scales comparable with their most energetic 
flows), because significant departures from three-dimensional isotropy and homo- 
geneity occur even with periodicity (see $$5 and 9 below), and because twice as 
many vertical modes are required to span a given range of vertical wavenumbers 
with a periodicity condition, which is therefore computationally more expensive 
than a rigid-surface condition. 

When B = 0, two quadratic invariants are the total energy and potential 

- "'=o a t  z = ~ , x .  
ax 

enstrophy , 

where { . }  denotes a volume average. More generally, the non-conservative torque is 
defined by 

The model is thus an adiabatic one in that it is non-conservative only in momentum 
but not in density. (An adiabatic, quasi-geostrophic, rigid-lid model is ill posed with 
non-uniform boundary densities - i.e. a+r/az =k 0 a t  z = 0 and n: - which would evolve 
as a passive tracer and thus cascade to arbitrarily small horizontal scales without 
buoyancy dissipation.) The first two terms on the right-hand side of (8) are fourth- 
order frictions in the horizontal and vertical, respectively. This is a subgrid-scale 
closure model which acts locally in both physical and wavenumber space, and which 
is more concentrated on smaller scales in its effects than is the second-order 
Newtonian viscosity of the Navier-Stokes equations. This closure model is inherently 
ad hoc, but considerable experience with it in oceanic and atmospheric models has 
shown that, compared to Newtonian viscosity : the benefit of less damped large-scale 
flows is achieved without introducing significant spurious effects, this property is 
illustrated for two-dimensional turbulence in McWilliams (1984). Since these terms 
are of higher differential order, additional boundary conditions are required. In the 
horizontal, periodicity suffices a t  all orders. In  the vertical, the choice of (6) plus 

when v, =k 0, yields negative definite viscous dissipation terms in the budgets for T 
and for kinetic enstrophy, {c}. I n  the V-budget, however, the vh terms are always 
negative definite, whereas the v, terms are so only if N ( z )  is a constant. The final term 
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in (8) is a bottom frictional torque due to  an Ekman boundary layer (note that in 
both the atmosphere and the ocean, the lower boundary supports stress but the 
upper one does not). This torque yields negative definite dissipation for T and {c}, 
but not V .  

When N ( z )  is a constant, q in (2)-(3) is the three-dimensional Laplacian of $ when 
the vertical coordinate is resealed to be zN. In  both T and V ,  rescaled vertical 
derivatives of I) enter symmetrically with horizontal ones. This is the basis for 
Charney's (1971) hypothesis that  $(x, y,  z )  be three-dimensional isotropic in its 
dependence upon the spatial coordinates. Note that this is quite different from 
velocity isotropy : in the quasi-geostrophic equations, the vertical velocity is small 
(i.e. O(R) )  compared with the horizontal velocity. 

3. Computations 
The quasi-geostrophic equations are solved numerically in a pseudospectral 

Galerkin model. The solution is represented as 

where p is a vertical mode index (0 Q p < N , -  l ) ,  x = (z,y), and k is a horizontal 
wavenumber vector, whose components have integer values and are selected by 
approximately circular truncation consistent with horizontal dealiassing of J and 
conservation of T and V when % = 0 (neglecting time-stepping errors). This 
computational technique is a three-dimensional generalization of the method of 
Orszag (1971), and the treatment of the vertical modes is discussed in Hua 81, 
Haidvogel (1986) somewhat more extensively than here. 

The quadrature points in physical space are 

where 1 d i ,  j < N,. The vertical eigenmodes satisfy 

- = 0  dF a t  z=O,n,  
dz 

and, for the special case N ( z )  a constant, 

where A = 1 / N  is the inverse first internal deformation radius. The vertical 
wavenumber may be thought of as either p or A,, although the latter is the one for 
which symmetry with k might be expected. 
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Initial conditions are chosen as a random realization of a moderately broadband 
horizontally isotropic energy spectrum : 

for positive al, a2, a3, and 64. Here k = lkl, and (p ,$ )  is a polar representation of 
( k ,  A) ,  

,u = (k2+Ak)i ,  $ = tan-' 9 . (15) 

&p(k, 0) = Yo eiZnydk) 7 P (k)fp-'k-t ,  

(: 1 
The spectrum peak in (14) occurs a t  (po, $ o ) .  The initial stream function transform is 
determined from 

(16) 

where y p ( k )  is a random variable, uniformly distributed over [0,1], and the 
amplitude Yo is such that 

T(0) = C , .~~I&~(k ,0)1~ = 1. 
k, P 

4. Weak decay 
Initial-value problems with finite viscosity exhibit a monotonic decay of T and V 

for the reasons discussed following (8). This behaviour is illustrated in figure 1 for a 
particular solution (A) which will serve as a benchmark for later parametric 
comparisons. (See table 1 for solution specifications.) The energy decreases by only 
a modest fraction over many time units, while the enstrophy decreases by several 
orders of magnitude during the same interval. Because of (17) a time unit would be 
a large-eddy circulation time if the energy were a t  the domain scale, and for energy 
primarily a t  smaller scales, as is true here initially, a circulation time is smaller than 
one. Because of inverse energy cascade and potential-enstrophy dissipation, a 
circulation time generally increases ; for example, the particular definition 2n{e } - i  has 
the values 0 .2 ,  0 .3 ,  0.8, and 1.8 a t  t = 0, 1, 5 ,  and 30. 

Since v, = E = 0 in solution A, the time derivatives of T and V are equal to minus 
the dissipation rates due to horizontal viscosity, 

DT = l'h c k61&p(k)12, Dv = Vh C k6p21&12, (18) 
k. P 

and these quantities are plotted in figure 2 .  Energy dissipation reaches a peak value 
around t = 0.15, and the potential enstrophy dissipation peaks later a t  t = 0 . 3 ;  these 
are on the order of initial eddy circulation times (see above). At late times, both 
DT and D, decline rapidly, approximately at a rate t-2. At all times, D, S D,. Note 
the irregularity in D, a t  late t ;  this is indicative of intermittency in the turbulent 
cascade process (transfer of potential enstrophy from larger scales to smaller), which 
is probably caused by the dominance of coherent vortices ($8). 

Altogether this behaviour is qualitatively in conformity with the proposition, 
familiar from two-dimensional turbulence, that  the energy dissipation rate decreases 
much more rapidly than the enstrophy dissipation rate as the Reynolds number 
increases towards infinity. Batchelor's (1969) energy-conserving similarity solution 
for two-dimensional turbulence embodies this proposition, and the V ( t )  decline in 
figure 1, at a rate somewhat faster than t-', is even slower than the tP2 rate in the 
similarity solution. (In our solutions the exponent in the power-law dependence of 
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FIGURE 1. 7' and V for solution A ;  see (7) for definitions and table 1 for parameter specifications. 
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FIGURE 2. Dissipation rates for solution A ;  see (18) for definitions 
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Solution 

A 

B 
C 
D 
E 
F 
G 
H 

I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 

T 

U 
V 
W 
x 
Y 
2 
AA 

A 

2 

2 
2 
2 
2 
2 
2 
- 

2 
2 
2 
2 
2 
2 
2 
1 
2 
1 
1 

2 

2 
8 
1 
4 
4 
2 
2 

'h 

8.5 x lo-* 

8.5 x 
4.0 x 10-7 
4.0 x 10-7 
4.0 x 10-7 
4.0 x 10-7 
4.0 x 10-7 
4.0 x 10-7 

4.0 x 10-7 
4.0 x 10-7 

4.0 x 10-7 
4.0 x 10-7 
4.0 x 10-7 
4.0 x 10-7 

4.0 x 10-7 
4.0 x 10-7 

4.0 x 10-7 

4.0 x 10-7 

4.0 x 10-7 
4.0 x 10-7 
4.0 x 10-7 
4.0 x 10-7 

3.2 x 
3.2 x lo-@ 

2.5 x 

3.2 x lo-@ 

3.2 x lo-* 

PO $0 

22.6 0.785 

67.9 0.785 
22.6 0.785 
11.3 0.785 
2.8 0.785 

23.6 1.326 
16.0 0 
(see misc. +) 

22.6 
22.6 
22.6 
22.6 
22.6 
22.6 
22.6 
11.3 
22.6 
11.3 
11.3 

22.6 

22.6 
66.0 
22.6 
22.6 
22.6 
22.6 
22.6 

0.785 
0:785 
0.785 
0.785 
0.785 
0.785 
0.785 
0.785 
0.785 
0.785 
0.785 

0.785 

0.785 
1.326 
0.785 
0.785 
0.785 
0.785 
0.785 

N z  
192 

192 
128 
128 
128 
128 
128 
128 

128 
128 
256 
256 
128 
128 
128 
128 
64 

128 
128 

128 

128 
256 
128 
128 
128 
128 
256 

N ,  
32 

32 
24 
24 
24 
24 
24 

1 

12 
32 
12 
24 
48 
64 
80 
64 
24 
64 
64 

32 

32 
24 
48 
12 
32 
24 
24 

Misc. 

' = g =  p = 0, a, =6, 
a* = 12, a3 = 2, 
86 = 0.08337 

&o(k, 0) from 
solution G,  
renormalized by (17) 

= 4 x 10-7 
'.. = 24 x 10-7 

E = 0.05 

E = 0.05 
p = 8  
p = 3  

t These values apply t o  all solutions except as remarked in this column. 

TABLE 1. Solutions 

V ( t )  is at least a weak function of numerical resolution and frictional coefficients.) 
The slowness of,V-decay for t > 1 is indicative of a decrease in the turbulent cascade 
rate, due both to the arrival of significant energy on the limiting scale of the domain 
($5), and to the emergence of coherent vortices which, when well separated from each 
other, adjust to configurations of zero nonlinear transfer ($8). 

5. Inverse cascade, three-dimensional isotropy, and equipartition 
Inverse cascade, the transfer of energy primarily towards larger scales, is a robust 

property of two-dimensional turbulence. So also is the forward cascade of enstrophy. 
However, with finite horizontal viscosity, the enstrophy arriving a t  small scales is 
efficiently dissipated, so that the peak of the surviving enstrophy spectrum will 
eventually also shift towards larger scales. 

These tendencies have also been shown to occur in the antecedent studies of 
geostrophic turbulence. Evidence for this in the present calculations is shown in 
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3. Centroid wavenumbers for T and V for solution A. Numerical labels indicate 
along the wavenumber trajectories. Dashed lines are reference centroid angles. 

t-v alues 

figurc 3. Centroid wavenumbers are defined as the weighted averages over all p and 
k ,  where the weights are proportional to either t,he energy or enstrophy spectrum ; for 

(19) 

energy (note that T ( k , p )  = 

(20) 

is the centroid three-dimensional wavenumber for potential enstrophy. Analogous 
definitions obtain for (k)T, ( A ) T ,  (k)”, and (A)v. 

For both T- and V-weights, the evolution is almost always towards smaller ( 1 6 ) .  An 
exception occurs for V a t  very early t while the dissipation rate is growing (figure 2), 
because transfer to larger ,u has not yet been balanced by small-scale dissipation. 

If the spectrum is three-dimensional isotropic (i.e. T ( k , p ) ,  a function of ,u only), 
then 

(21) 
(k)T K dq5 cos2q5 = an, 

I (A>T K I:’* dq5 sin4 cosq5 = f. 
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Here the discrete ( k ,  p)-sum is approximated by continuous wavenumber integrals, 
and the missing proportionality factors in (21), which depend upon the shape of T ,  
are identical for (k) and ( A ) .  The centroid wavenumber angle, i.e. 

with weights T or V ,  is at least a partial measure of the degree of isotropy between 
vertical and horizontal. From (21)-(22), 

= 0.637 (23) 

for a three-dimensional isotropic spectrum. (Note that (q5) = is a necessary but 
not sufficient condition for isotropy.) 

In  figure 3 a t  early t ,  there are substantial shifts in (q5)v and ( $ ) T  away from 
$,, = in towards smaller q5. These tendencies, however, reverse or a t  least slow down 
after approximately a circulation time. Herring (1980) has shown that transfer rates 
in closure calculations of geostrophic turbulence are a decreasing function of 4, and 
the early tendency, (d) < 0, can be interpreted as a consequence of this. From initial 
conditions peaked about $o, there is an evolution towards three-dimensional 
isotropy, leading to a spreading of the spectrum in q5. Since the spreading rate is more 
rapid towards small q5 than large, the centroid initially shifts towards small r j ,  but 
later reverses its tendency as the transfers to large $ catch up with those to small $. 
A more extensive analysis of nonlinear transfer tendencies in geostrophic turbulence 
is presented in Herring & McWilliams (1988). 

For the centroid trajectories in figure 3, the ($)-values are listed in table 2. The 
small differences between $,, and the ($)-values at t = 0 are due to discretization 
effects in evaluating (14)-(17). After the initial decrease in ($)v, the subsequent 
increase in monotonic for t E [0.3,15.0], followed thereafter by a small decline. ( $ ) T  
is monotonically decreasing for all time, although the rate is slow after the first 
circulation time. The difference between T- and V-centroids is primarily a difference 
between large and intermediate spatial scales. Geostrophic turbulence is funda- 
mentally anisotropic a t  the larger scales because p = h = 0 (the barotropic mode) 
has a finite velocity while k = 0 does not. In  a bounded domain the anisotropy of 
wavenumber resolution is quantized, with h = 0, A ,  2A, . . . and k = 1,2 ,3 ,  . .., and this 
anisotropy is of significance whenever there is a significant energy on the domain 
scale, which is almost always true here. (This anisotropy occurs with either a periodic 
vertical boundary condition or the present rigid-surface condition (6).) Thus figure 3 
and table 2 indicate that the intermediate scales are not too far from isotropy, with 

< ($)v < an, while the largest scales are anisotropic, biased towards larger 
vertical scales than horizontal ones, i.e. with ( r j ) T  < $I, because of the finite domain 
size. (The original proposal of isotropy in Charney 1971 was only for intermediate 
and smaller scales, albeit partly for geophysical reasons not relevant here.) 

A more accurate and complete assessment of three-dimensional isotropy can be 
made by examining the horizontal-shell-integral form of the spectrum, 
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t (4)" <$)T 

0 0.76 0.78 
0.25 0.58 0.60 
1 .o 0.60 0.55 
4.0 0.69 0.51 

15.0 0.12 0.43 
30.0 0.70 0.32 

TABLE 2. Wavenumber centroid angles in solution A 

When the solution is statistically independent of horizontal orientation, as it is here 
except for /3 + 0 ($12), then there is no loss of information in this summation of T. 
For three-dimensional isoiropy, an ensemble average of I&,(k)l is a function of p 
only, hence T ( k , p )  = $ , ~ ~ l $ ~ - , ( k ) l ~  is as well. Since the shell integration in (24) yields 
a metric factor k = p cos$, T* is equal to cos$ times a function of p ;  figure 4 is a 
contour plot of T,(k, p) /cos  $. The energy spectrum in figure 4 (a) shows two adjacent 
peaks at  small wavenumbers and an intermediate- and large-wavenumber regime 
where equal-energy contours are nearly parallel to lines of constant p, and thus 
nearly three-dimensionally isotropic. However, an examination of departures from 
the isotropic component of the spectrum (figure 4b) shows that there is a prevalent 
pattern of greater energy at large $ for p-values greater than the spectrum peaks ; 
this is the cause of ($)" > $I in figure 3 and table 2. On the other hand the zone 
containing the spectrum peaks mostly has small $ values due to the finite domain 
size, and this is the reason for ( $ ) T  < $,. 

Again the relative slowness of nonlinear transfer a t  large $ (Herring 1980) can be 
invoked to explain the intermediate-scale anisotropy. In  an approximately isotropic 
spectrum, the largest transfers will be to smaller and larger p, with the effect of 
depleting the energy a t  intermediate p. A slower depletion rate a t  large $ will yield 
larger energy values there, and thus lead to  anisotropy as seen in figure 4 ( b ) .  

The degree of departure from isotropy is influenced by the numerical resolution 
and anisotropy of the dissipation (which is totally horizontal in figure 4), but there 
is only weak influence from initial conditions; see $§6 and 7 below. Hua & Haidvogel 
(1986) also presented evidence for approximate isotropy from numerical solutions 
with lower and more anisotropic resolution. 

For a three-dimensional isotropic solution, one can derive the energy and potential 
enstrophy component ratios 

using a continuous approximation to the discrete grid in k and p .  The first of these 
relations is referred to as energy equipartition. In  our solutions, both ratios have an 
initial value of approximately 1 .O when $,, = in in the non-isotropic formulae (14) 
and (16). Both ratios decrease rapidly during the first few circulation times; 
thereafter the energy ratio slowly decreases, while the potential-enstrophy ratio 
varies non-monotonically and only slightly. At intermediate times, the energy ratio 
is less than the isotropic value above and the enstrophy ratio is greater ; for example, 
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I 

k 
10 k 30 1 3 

1 3 10 30 t 
k 

FIGURE 4. T,(k,h)/cosr$ from (24) for solution A, averaged over 6 < t < 8. Dashed lines are curves 
of constant p. (a) log,o(T,/cosr$j, with a contour interval of 0.33. (b)  TJcos# minus i@ #-average, 
with a contour interval of 0.01; light and dark stippling indicate positive and negative values, 
respectively. 

in solution A at t = 5 ,  the former has the value 0.34 (which is < 0.5 from (25)) and 
the latter has the value 0.53 (which is > 0.375 from (25)). The sense of the departures 
from isotropy is as seen in figures 3 and 4: the largest scales have relatively more 
kinetic energy and the intermediate and smallest scales have relatively more {v*}  
than in a wholly three-dimensional isotropic situation. 
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6. Numerical resolution and Reynolds number 
The degree of three-dimensional isotropy is influenced significantly by the isotropy 

of the numerical resolution. The latter is determined from the largest available 
horizontal and vertical wavenumbers : 

kmax = (:)''fix, Amax = ~ ( ~ 2 - 1 ) .  (26) 

(The numerical factor (t); arises from the particular truncation rule yielding T- and 
V-conservation; see Orszag 1971.) In  figure 5 solution isotropy is plotted as a 
function of the ratio of the resolution scales (26). In  spite of the great variety of 
parameter values encompassed in these solutions, their results collapse to a 
considerable degree onto a monotonic dependence on the resolution ratio. Note that 
the degree of solution isotropy is approximately (q5)v = in for isotropic numerical 
resolution, rather than is 
given in $5, but no quantitative explanation is yet available for this particular value 

Other solution properties are also dependent on the numerical resolution. For each 
resolution the viscosity values have been chosen as small as possible, consistent with 
long-time smoothness of solutions and the avoidance of equipartition among all 
available modes ; this is equivalent to making the grid Reynolds number slightly less 
than a critical value (Bennett & Haidvogel 1983). (The closeness to the critical value 
has been implemented only approximately, since a posteriori tuning is computa- 
tionally expensive.) Thus for v ,  = 0, v ,  is chosen as a decreasing function of 
N, (approximately Ni4) but independent of N, and all other parameters as well; see 
table 1.  Therefore, a bulk Reynolds number is a strongly increasing function of N,. 
Among many possible definitions, the following is perhaps most relevant to the 

from (23). The qualitative explanation for (q5)v > 

of (4)v .  

vorticity : 

k ,  P 

where (k)< is the centroid k for vorticity. Table 3 lists properties of representative 
solutions for a range of Nx between 64 and 256. The corresponding Re, span a range 
of nearly two orders of magnitude. Re,, increases with time because the inverse 
cascade diminishes (k): faster than dissipation diminishes {c};, although this trend 
must eventually reverse a t  very large t. The relatively small initial values of Re, are 
due to the broadband nature of the initial condit'ions. An alternative Reynolds 
number 

{ u2 + v2)i 
Re, = L: 

'h 

is based upon the Taylor microscale, 

and it is more representative of the most energetic motions in the solution. Its values 
are also listed in table 3. They show the same trends as Reh with t and N,. Re, is 
always larger than Re,, by as much as two orders of magnitude. Thus the solutions 
with N, large are appropriately described as having large Re. 

Other properties in table 3 also vary with N,.  The viscous decay rate for T 
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Arnsxlkrnsx 

FIGURE 5. Isotropy of solution ((4)") as a function of isotropy of numerical resolution; see (26) for 
definitions. Dots are for t = 2 and crosses are fort = 10. Solutions are (left to right) K ,  I, L, A, C, 
D, J, P, M, N, and 0; all solutions have 4,, = in, but ,uo, A ,  N,, and N ,  vary. 

Q 64 29, 53 44, 555 0.88 0.27 0.09 3.7 
C 128 49, 554 110 ,  1.8 x 104 0.55 0.13 0.19 11.2 
L 256 397, 2160 1200, 2 . 0 ~  lo5 0.18 0.13 0.20 31.7 

TABLE 3. Horizontal resolution 

decreases with increasing resolution. In any particular solution, the dissipation rates 
D,/T and D,/V are strongly varying with time (figure 2).  For the solution sequence 
in table 3, D,/T decreases approximately as N i 2  (or approximately as Re,') for each 
t ,  whereas D,/V does not show any strong or persistent dependence upon N,. Thus 
the potential-enstrophy dissipation rate is not a strong function of Reynolds number 
in these solutions. The inverse cascade, measured both by the fractional change in 
<p), and by the fraction of the potential enstrophy transferred into the barotropic 
mode, proceeds farther. Finally, the vorticity field becomes increasingly spatially 
intermittent, as indicated by the large values of kurtosis, 

This intermittency is due to the development of coherent vortices (8  8). 
Even though vertical resolution is quite important for three-dimensional isotropy 

(figure 5 ) ,  N, has less influence on the properties included in table 3 than does N,. The 
greatest sensitivity is for N, much smaller than an isotropic resolution value (e.g. 
solutions K and I), where T-decay is anomalously low and the barotropic fraction 
anomalously high; in contrast, there is little variation with larger N,. An extreme of 
N, = 1 (two-dimensional flow; e.g. solution H) also exhibits anomalously low 
T-decay compared with fully three-dimensional solutions. 
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Thus far, we have discussed solutions with horizontal friction only (i.e. v, = 0 in 
(8)). The converse (vh = 0) cannot be implemented without evolving towards modal 
equipartition on a circulation timescale, unless v, is so large that the evolution is only 
weakly nonlinear. However, for fixed vh, a sequence of solutions with increasing v, 
only slowly diverges from that with v, = 0. The principal effects of finite v, are to 
steepen the rate of decrease of T(E,h) with h (and thereby to diminish centroid 
#-values) and to increase total dissipation. For isotropic viscosity, v, = vh, the effects 
of vertical viscosity are small (e.g. comparing solutions P and R with v, = 0 and 
= vh, respectively) : after an initial adjustment period on the order of a circulation 
time, the vertical dissipation rate for energy is less than one third the horizontal, and 
the total T-decay by t = 5 is only enhanced by about 5 YO. To get isotropic dissipation 
rates (where the energy dissipation rates associated with v, and vh are equal; i.e. 

v, must be much larger than vh. This occurs when v, = 6 v h  in solution S, and even 
then total T-decay is only enhanced by about one third over solution P. For two 
solutions with A = 1 and h,,,/k,,, = 1.04 (i.e. solutions P and S), 

( # ) " ( t  = 10) = 0.80 for v, = 0 

= 0.68 for v, = 6v,, 

and even the latter value is larger than # I  in (23), which indicates three-dimensional 
anisotropy in the same sense as in figure 4(b), in spite of vertical friction acting to 
diminish it. 

Thus, within a substantial range, the anisotropy of the viscosity is not important 
to the qualitative properties of the solution. The relative inefficiency of vertical 
viscosity compared with horizontal may be interpreted as an inefficiency of 
potential-enstrophy transfer to replenish wavenumbers in the dissipation range with 
large polar angle $. This is yet another consequence of the decrease of transfer rates 
with # (Herring 1980). 

7. Initial conditions 
The spectrum properties described in $94-6 occur for almost all initial conditions. 

This is illustrated in figure 6. Solutions with a wide variety of  values have 
centroid wavenumbers that tend with time to converge towards small ( P } ~  and 
nearly isotropic (9)". A weak memory of initial conditions is retained, however, 
since centroid positions a t  t = 10 have the same relative ordering as initially. 

Of particular interest are the solutions with extreme initial conditions. For ,uo 
sufficiently small (solution E), (p)" initially increases although (,LL)~ continues to 
monotonically decrease. This is an example of initially nearly non-dissipative 
forward and inverse cascades, where, because of the large separation between the 
initial spectrum peak and dissipation scales, the energy transfer to a limited range 
of available large scales is accompanied for a finite interval by potential-enstrophy 
transfer to a much broader range of small scales at a rate faster than dissipation 
destroys it. For either extreme of #o (solutions F and G), the initial evolution for 
several circulation times is such as to change (#)v more than (P )~ .  These tendencies 
can be associated with instabilities of non-parallel (vortex-like) flows, which are 
characterized by Burger number R. For large B (or small (#)), internal barotropic 
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2.5, and 10.0 are plotted. 
FIGURE 6. Centroid wavenumbers for V for solutions as labelled. Only the values a t  t = 0, 0.25, 1.0, 

instability vertically fragments the flow structures (Gent & McWilliams 1986), while 
for small B (or large (#)), baroclinic instability leads to horizontal fragmentation 
(Ikeda 1981 ; McWilliams, Gent & Norton 1986) ; in either case the fragmentation 
yields a less extreme Burger number and (#) for the flow. These early-time 
tendencies can also be interpreted as the consequence of three-dimensional 
isotropization, i.e. the spreading of the spectrum in #. Note in particular the relative 
slowness of the initial spreading for large $o (solution G), which is a consequence of 
slower nonlinear transfer rates for larger #. These transfer tendencies are more 
extensively examined in Herring & McWilliams (1988). 

Also in figure 6 is a comparison between the inverse cascades of two-dimensional 
and geostrophic turbulence, The two-dimensional solution H has initial conditions 
which are identical to the p = 0 mode in solution G, except for renormalization to 
conform to (17). It is remarkable that the (k)" values match each other to better 
than 10% for all time (the same is true for T-centroids), in spite of the fact that the 
geostrophic solution is making a transition from nearly two-dimensional initial 
conditions towards three-dimensional isotropy. 

Other solution properties also vary as a function of initial scale (table 4). As p,, 
increases, total dissipation increases since more energy resides within the dissipation 
range of scales. Also, for larger po, the inverse cascade transfers energy a greater 
distance in p but i t  never arrives at quite as small p-values at late t ( e .g .  the solution 
is less barotropic). Finally, the vorticity intermittency (i.e. Ku,) is greatest when the 
initial conditions are at intermediate scales, because this yields the most favourable 
combination of large inverse cascade rate and weak energy decay rate. 
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Solut,ion PO 

E 2.8 128 0.014 0.46 0.34 6.3 
D 11.3 128 0.215 0.18 0.24 16.3 
c 22.6 128 0.546 0.13 0.19 11.2 

A 22.6 192 0.317 0.13 0.20 22.6 
B 67.9 192 0.773 0.10 0.15 9.6 

TABLE 4. Initial scale 

8. Vortex emergence 
As has been frequently alluded to  above, isolated, long-lived, vortical flow 

structures spontaneously develop in geostrophic turbulence, as they also do in two- 
dimensional turbulence. These vortices have their simplest structure in the <-field : 
they essentially have 5 of a single sign, decaying monotonically in the horizontal 
coordinates away from a central extremum, with azimuthal symmetry about a 
vertical axis of finite extent (figure 9 (plate 1) and figure 10). This configuration is an 
exact, steady solution of ( 1 )  when 9 = p = 0,  although such single-vortex solutions 
are not superposable. 

A robust statistical measure of vortex dominance is the kurtosis (28), which 
expresses the degree of spatial sparseness of the vortices, as well as the relative 
weakness of other flow features which are less sparse. Ku, increases monotonically in 
time (figure 7) ,  and reaches values vastly different from Gaussian. Note that the 
kurtosis does not begin to grow rapidly until after several circulation times, well after 
the time of maximum dissipation rate (figure 2 ) ;  this reflects the dominance of 
vortices only after the inverse cascade is well begun. On the other hand, the 
emergence of vortices is visually recognizable in <(x, y)-patterns (as in figure 9) even 
within the first circulation time ( t  5 0.25). 

Kurtosis for q and 7 also grows with time to  large values; for example, in solution 
A a t  t = 15, Ku, = 40 and Ku, = 23, while Ku, = 31. At the core of a vortex, 7 has 
an extremum of the same sign as <, but i t  has a larger horizontal scale of decay away 
from the core ; these properties lead to q being more spatially intermittent than <, and 
7 being less intermittent. Recall that the kurtosis for 6, and thus for q and 7 as well, 
also increases monotonically with resolution and Reynolds number (table 3), and it 
is largest for initial conditions of intermediate scale (table 4). It is also remarkable 
that, in the previously cited comparison of two-dimensional and geostrophic 
solutions (H and G, respectively), there is no significant difference in Kuc(t). There is 
little dependence of kurtosis on N, and #,,. 

After vortex emergence, the probability functions for almost all flow quantities are 
highly non-Gaussian. This is illustrated in figure 8 not only for <, which has a large 
kurtosis, but also for velocity, which does not. Compared to a Gaussian distribution 
of equivalent variance, there is a high probability of occurrence for large-amplitude 
values, with a compensating low probability for intermediate (for vorticity) or low 
(for velocity, stream function, etc.) values. Low values are relatively common for 
vorticity because these are typical of the space between the well-separated vortices 
a t  late times. 

A striking feature of these probability functions is their exponential form, i.e. 

P(a)  cc e-lal, 
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FIQURE 7. Ku,(t) for solution A ;  see (28) for definition. 

except for values of the amplitude a that are either very small or very large. The drop 
in P(a) for large a is most likely due to under-sampling on the finite model grid, 
whereas the departure from exponential form near a = 0 is certainly not due to 
sampling error. Partial range exponential distributions have also been found 
experimentally for velocity in turbulent shear flow (Anselmet, Gagne & Hopfinger 
1984) and for temperature in thermal convection (Heslot, Castaing & Libchaber 
1987), and computationally for shear in stably stratified turbulence (Herring & 
M6tais 1989), but a satisfactory explanation has not yet been found for this possibly 
quite general property of turbulent flows. 

The vortices can have a great influence on the evolution of the statistical 
properties of geostrophic turbulence. At late times, when almost all of the vorticity 
is concentrated in vortices, then, since all other flow quantities can be calculated 
uniquely from 6 (§2), the dynamics of the flow evolution becomes nearly synonymous 
with the dynamics of the vortices. While i t  is beyond the scope of this paper to 
describe vortex processes in detail, a brief summary is given below to establish their 
conceptual relations with the statistical properties being examined here ; further 
analyses will be reported in future (e.g. McWilliams 1988). 

Vortices emerge from random initial conditions, in regions where the vorticity is 
predominately of one sign and larger than the local strain rate. This occurs through the 
processes of horizontal symmetrization (Melander, McWilliams & Zabusky 1987 a )  
and vertical alignment (whereby 6 a t  adjacent vertical levels evolves towards a 
greater phase correlation). Subsequently such vortices resist deformations induced 
by straining due to neighbouring vorticity distributions, which is the central 
mechanism of forward cascade of potential enstrophy, and thereby diminish the 
cascade rate. (Isolated, symmetric, aligned vortices have zero nonlinear tendency ; 
J(*, (I) = 0.) For two-dimensional turbulence, the resistance of vortices to straining 
deformations has been demonstrated by Weiss (1981), McWilliams (1984), and 



21 6 J .  C. McWilliams 

1 

1 o-* 

10-4 

1 o-6 

1 o-8 

Velocity 

FIGURE 8. Pu’ormalized frequency distributions for ( a )  vorticity and ( 6 )  velocity components for all 
(z, y) quadrature points at z = zo (see ( 1 1 ) )  from solution L a t  t = 20. Horizontally averaged 
kurtosis values are 34.3 and 3.4 respectively. Gaussian distributions with equivalent variance are 
also plotted (dotted lines). 

Brachet et al. (1988), and the reduction in cascade rate has been demonstrated by 
comparing numerical solutions with vortices, and closure-theory solutions with 
limited intermittency (Herring & McWilliams 1985). This leads to relatively long 
vortex lifetimes, typically many circulation times, and a reduction in dissipation 
rate. When vortices are well separated from each other, they move under their 
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FIGURE 9. &,y,z = to )  at (a) t = 10 and (b) t = 20 in solution L. The colour bar at the right has a 
linear variation with amplitude, from [ = -90 to +90, with the lightest grey centred at 5 = 0. 

Mc WILLIAMS (Facing p. 217) 
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mutual advective influence approximately as conservative point vortices (shown for 
two-dimensional turbulence by Benzi et al. 1988). However, when mutual advection 
causes close encounters between vortices, they undergo interactions which induce 
strong deformations from symmetry and alignment and which can be highly non- 
conservative. These interactions include dipole pairing of opposite-sign vortices, 
merger of like-sign vortices (Melander, Zabusky & McWilliams 1987 6 ,  1988) whose 
cores are a t  approximately the same vertical level, attachment of like-sign vortices 
whose cores are separated vertically, and straining deformations which cause 
enhanced dissipation (even to the point of destruction) and may cause vertical 
fragmentation. In  time many close vortex encounters occur, and the cumulative 
effect of these interactions is to have fewer surviving vortices, generally with larger 
size (both vertically and horizontally), with larger circulation, and with larger spatial 
separations (i.e. intermittency) ; collectively these tendencies represent a transfer of 
energy to  larger wavenumbers (i.e. inverse cascade). Once vortices have emerged, 
dissipation is largely restricted to the non-conservative interactions during close 
encounters. As vortices become fewer and sparser, close encounters become rarer, 
and the potential-enstrophy dissipation rate becomes more intermittent (figure 2). 
Even a t  late times, most surviving vortices can be traced backwards in time to the 
initial conditions without ambiguity. Frictional decay of individual vortices is a t  a 
substantially slower rate than for the bulk measure {c];, except during close 
encounters. 

Vortex structure is illustrated in figures 9 and 10. In the horizontal cross-sections 
(figure 9, plate l ) ,  one can see many of the features described above. Where vortices 
are well separated from each other, the typical shape is axisymmetric about a central 
extremum. For vortices in close proximity, substantial distortions from axisymmetry 
occur, including the expulsion of elongated filaments in which enhanced dissipation 
is occurring. Dipole pairing of opposite-sign vortices occurs (e.g. in the lower right 
quadrant and near the bottom to the left of centre in figure 9a). Merger of like-sign 
vortices is also occurring (e.g. near the top in figure 9 a ) ;  following merger, 
symmetrization ensues (e.g. in the centre of figure 9 b ) .  With time there are fewer 
vortices, which typically are farther apart, larger, and less distorted from 
axisymmetry . 

Surrounding the vortices in figure 9, 5 generally has a small amplitude, and its 
characteristic pattern consists of elongated filaments (signatures of the forward 
enstrophy cascade, induced by the external strain field from the vortices) and small- 
scale waves propagating on the horizontal shear field. Examples of the waves are the 
sinuous pattern between the opposite-sign vortex pair in the lower left of figure 9 (a)  
(which probably arises as a parallel-shear-flow instability of the strong velocity 
between the nearby vortices), and the corrugated pattern surrounding the 
symmetrizing positive vortex in the centre of figure 9 ( b )  (which is sufficiently close 
to the truncation scale in this solution that its details are of doubtful accuracy ; in 
any event its amplitude is so slight as to have no important influence on larger-scale 
features). 

In a three-dimensional perspective (figure lo), the vertical extent is seen to be 
highly variable, but i t  is almost always less than the domain height. In most 
instances the vortices are aligned vertically ; exceptions occur during close 
interactions. Vortex Burger numbers (B ,  EE (Az /AAr)2 ,  where Az and Ar are vortex 
height and width) are typically larger than one. Partly this is a kinematic 
consequence of determining height and width from the [-field: for a three- 
dimensional isotropic energy spectrum, by calculations analogous to  those in (21), 
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FIGURE 10. Isovorticity surfaces in solution A at 6 = 20. Vorticity values are 6 = + 15 (dark) and 
- 15 (light). The viewing position is located at ( x ,  6 x ,  3x) ~ recall the domain dimensions are 
(2n, 2 x ,  x )  - and the light source is located at infinity along the major diagonal from the origin a t  
(right, rear, bottom of the domain) through the appropriate domain boundary point a t  (left, front, 
top). The bottom and three of the side edges of the domain are included for orientation. 

(23), and (25), a vorticity Burger number, B, ZE [( lc) , / (A), l2,  would have the value 
( Z X ) ~  = 5.6. However, for the strongest vortices in particular, B ,  values are 
significantly larger than Be The probable explanation for this is that  the surviving 
vortices have had to  endure strong interactions during close encounters, and the 
relevant processes of symmetrization, merger, alignment, and attachment are more 
conservative of vortex structure for larger B,. Consistency between the approximate 
three-dimensional isotropy of the spectrum and large B, values requires that 
horizontal separations between vortex edges be typically larger than vertical ones, 
which they are. More vortices have their strongest extremum on the vertical 
boundaries than a t  any interior level, and this location bias is greater for the 
stronger vortices. Finally, there is a modest tendency for clumping of vertically 
separated, like-sign vortices, which often persists for quite long intervals with little 
non-conservative effect. 

9. Vertical structure and inhomogeneity 
The vertical boundary condition (6) imposes an inhomogeneity in the vertical. 

Even when the initial conditions are otherwise homogeneous, solutions spon- 
taneously develop a degree of vertical inhomogeneity which increases with time. One 
manifestation of this, mentioned above, is the bias towards vortex cores being on the 
boundary (note (6) is conducive to c, q, and ~ having a vertical extremum there). An 
associated property is an edge enhancement of vorticity variance (figure l l ) ,  which 
increases monotonically with time. Vertical profiles of variance (figure 12) show a 
monotonic decay away from the edge for 5 and @, with the latter having a larger 
decay scale (associated with its spectrum peak a t  smaller p )  ; the decay scales vary 
inversely proportional to  A (see also 5 11). However, both q and q exhibit a sharp drop 
in variance between the quadrature points closest and next closest to the edge. This 
is a finite vertical representation of what appears to be a discontinuity in z ;  as N, 
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FIGURE 11. Evolution of the ratio of edge and centre [-variances (based upon a horizontal average) 
for solution A. 

FIGURE 12. Vertical profiles of horizontal-average variance for solution A at t = 10. Ail average has 
been made using the symmetry between z and A - z. 
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FIGURE 13. Vertical profile of correlation coefficient between 5 and 7 (solution A ;  t = 10). 

increases (e.g. the sequence of solutions J, M, N, and O), its amplitude remains 
roughly constant while its width decreases as N i l .  (A modification occurs when the 
initial conditions are especially large scale in the vertical (e.g. solutions G and E):  
then the near-edge drop is spread over a larger interval in z.)  There is a corresponding 
near-edge drop in the correlation between [ and 7 (figure 13), which is particularly 
large a t  the edge, drops to approximately zero next to the edge, and rises to an 
intermediate positive value in the interior. 

The vertical structure of second moments (figures 11-13) is a t  least partly a 
consequence of the vertical structure of vortices. At the core of a vortex with a shape 
as described in $8,  Sand 7 have extrema with the same sign, and thus combine to give 
q an enhanced extremum. At the edges, where vortex cores are particularly abundant 
and strong, both total variances and correlation are large. Near the edge, vortex 
cores are particularly rare because cores near the edge tend to migrate to the edge 
during close interactions (McWilliams 1988). Since 9 has a relatively short vertical 
correlation scale, the interior levels adjacent to the boundary levels have few 
7-extrema, and the variance of 7 and its correlation with [ both have minima there. 
Further into the interior, the abundance of vortices is intermediate, and so are the 
second-moment values. However, the edge enhancement of c, etc., is not uniquely 
associated with vortices, since it also occurs in solution 2 where p is large enough to 
destroy the vortices ($12). 

Herring (1980) noted that there is nothing in the conservative quasi-geostrophic 
equations that enforces vertical homogeneity, in contrast to the Navier-Stokes 
equations in the absence of boundaries. A simple illustration of this is the 
conservation of horizontal-average enstrophy a t  each z in the absence of dissipation, 
so that any initial inhomogeneity in the q-variance profile will persist. This result also 
holds with vertical boundaries, so that the evolutionary inhomogeneity in figure 11 
implies that dissipation has acted inhomogeneously in z (less dissipation, because of 
a reduced potential-enstrophy cascade, where vortices are most dominant). 
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FIGURE 14. Vertical profiles of normalized r.m.s. vorticity (i.e. [is}, (z)/{C}$, where { .}, is a 
horizontal average) at t = 0 and 10 in solution T. 

When the initial conditions (14)-( 17) are multiplied by a vertical envelope function 
to yield an inhomogeneous distribution, the sense of the inhomogeneity persists in 
time, although its degree tends to diminish. For the reason given above, changes in 
q-variance inhomogeneity can occur only through dissipative processes. Variances of 
other quantities are not so tightly constrained as q, but their behaviour is 
qualitatively similar. This is illustrated in figure 14 for an initial profile which is 
strongly centre concentrated, and which remains such but for weakly non- 
conservative homogenization. Other solution properties are qualitatively similar to 
those in the more homogeneous solutions discussed above, a t  least near the centre. 
In  the vertical regions with small q-variance, however, the inverse cascade is 
inactive, vortices do not develop (Ku, remains near the Gaussian value), and { and 
7 have a strong negative correlation (so as to be minimally inhomogeneous subject 
to the constraint of the q-distribution; see (2)), in contrast to more active vortex- 
containing regions where the correlation is positive (figure 13). The absence of 
vortices where q is small is consistent with their emergence only through strong 
nonlinear interactions. 

In geostrophic turbulence with a periodic vertical boundary condition, inhomo- 
geneity could not develop from homogeneous initial conditions, but initial 
inhomogeneity would persist much as in figure 14. 
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0 

FIGURE 15. Vertical profiles of variance for solution U (with E =k 0) at t = 10. The Ekman boundary 
layer is a t  z = 0. 

10. Ekman friction 
Another source of vertical inhomogeneity arises when E is non-zero in (8), thus 

making the lower boundary a site of enhanced energy dissipation and a non- 
conservative torque (which is not sign definite in its effect on potential-enstrophy 
evolution). If vertical transfer processes were efficient, the resulting inhomogeneity 
might be slight ; however, as might be anticipated from closure approximations 
(Herring 1980) and the results of the preceding sections, the transfer is inefficient and 
the inhomogeneity can be large. 

Figure 15 shows vertical variance profiles from a solution with moderately small 
E .  y9 and [ are greatly diminished in the vicinity of the Ekman boundary layer, while 
in contrast q and 7 are substantially enhanced, because strong vertical shears arise 
between the interior and the weak near-boundary flow. On the other hand, in the 
interior and near the upper, slippery boundary, these profiles are quite similar to 
those with E = 0 (cf. figure 12, disregarding a difference of overall variance amplitude 
due to different N, and v,,). This is further evidence of the ability of geostrophic 
turbulence to maintain vertical inhomogeneity . 

A comparison is given in table 5 between two solutions that are the same except 
that one has Ekman friction. The differences between these solutions are plausibly 
the consequence of the effect illustrated in figure 15. Energy dissipation is necessarily 
enhanced with Ekman friction, but the size of the enhancement, here 12 %, need not 
be large since its effects are confined in z ;  once the flow is depleted near the boundary, 
its component of the dissipation rate due to E becomes small. Net potential-enstrophy 
dissipation is even diminished by Ekman friction, probably because its effect is not 
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J 0 0.43 16.6 0.13 0.83 0.23 
U 0.05 0.36 19.2 0.15 0.96 0.15 

TABLE 5. Ekman friction 

sign-definite for V .  In  addition, Ekman friction reduces flow near the boundary and 
thus decreases the largest available vertical scale ; therefore, it causes an increase in 
the wavenumber centroid polar angle and a decrease in the barotropic fraction of T 
and V .  

Finally, the kurtoses of 5 , ~  and q all drop to nearly Gaussian values in the vicinity 
of the Ekman boundary layer ; i.e. coherent vortex structures do not occur there. In 
spite of this, the vortices are just as strong away from the Ekman layer as they are 
in solutions with only slippery vertical boundaries (e.g. the layer kurtoses are not 
significantly different between solutions J and U except near z = 0). 

11. Stratification 
If only the stratification strength is changed, the effect on the solution is quite 

large. A comparison of the first two solutions (L and V) in table 6 shows that 
decreasing the BrunkVaisala frequency N leads to much greater T- and V-decay, 
larger centroid modulus and angle, less potential enstrophy a t  large vertical scales, 
and less vorticity kurtosis. These solutions have the same N,, N,, and initial 
condition I&, y, z ,O).  

However, these changes are not fundamentally due to the change in stratification, 
but rather are indirect consequences of its change. The continuous problem posed in 
$2 is isomorphic under the following transformation : 

(2, H ,  v,, N )  + (ap%, a-lH,  u -~v , ,  aN),  (29) 

where H = x is the height of the domain and a is any positive constant. Thus, a given 
solution (L, say with N = i) can be reinterpreted as having a different N (e.g. 
N = Q, the same as in solution V), in a different domain ( H  = 4 ~ ) ,  in general with 
different vertical viscosity (except where v, = 0 as here). The transformed vertical 
eigenmodes (12)-( 13) have cosine argument (PIT z / H )  and the eigenvalues are A, = 
p x / ( H N ) ;  hence the stretched vertical wavenumber is unchanged by the trans- 
formation since the product H N  is unchanged. Two important indirect consequences 
of the transformation (29) are 

(i) The transformed initial conditions are unaltered in the (k, A)-wavenumber 
space (i.e. po and $o me the same in (14)), but the distribution in ( k , p )  can be quite 
different (whereas solutions L and V have identical ( k ,  p )  initial distributions) ; 

(ii) the vertical spacing of quadrature points (11) changes by the factor 01-l in the 
transformed solution, while A,,, in (19) does not change (whereas solutions L and V 
have the same value for z, and differ by a factor of 4 for Amax). 

The discussions in $86 and 7 show clearly that differences of numerical resolution 
and initial conditions can be quite important. To see how they dominate the 
comparison of solutions L and V, consider a different comparison set (solutions W, 
C, and X, also in table 6) where N, is changed in direct proportion to N and the initial 
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$@, Y, *, 0) fixed 

L 2 0.38 0.82 71 20 0.55 0.59, 3 32 
V 8 1.52 0.20 134 93 1.36 0.14, 0 12 

(Po,$o) fixed 
W 1 0.78 0.45 34 16 0.78 0.39, 3 10 
C 2 0.76 0.45 33 17 0.77 0.38, 1 11  
X 4 0.73 0.45 33 15 0.68 0.39, 0 10 

TABLE 6. Stratification 

conditions are for common (,uo,+,). Such a specification reduces the indirect 
consequences of a change in stratification, although the solutions W, C, and X, still 
fail to be isomorphic under (29) through differences in domain height and stretched 
vertical wavenumber resolution. AA = - A,; any differences in their solution 
properties must be attributed to one of these influences. However, it is remarkable 
how few differences there are among solutions W, C, and X. Even the largest 
difference listed, for <$)", can be rationalized as a discretization error due to the 
disproportionate influence the p = 0 mode has in sums over wavenumber in solution 
X with small N, : the quantity in the eighth column in table 6 shows that, integrated 
over a common interval in A ,  the amount of potential enstrophy in large vertical 
scales is nearly the same among these latter solutions. 

The similarity of bulk properties for solutions W, C, and X demonstrates that 
vertical boundary effects are not of primary importance in these solutions, in spite 
of several demonstrable local consequences (see figures 11-13). The vertical decay 
scales for edge enhancement of vorticity variance and for Ekman frictional 
dissipation both vary approximately as N-' (based upon comparisons of solutions W, 
C, and X (for e = 0) and U and Y (for E $. 0)). Flow structures in physical space have 
quite different aspect ratios, as indeed they should from (29) : the coherent vortices 
in solution W are much broader and shorter than those of solution X, for example, 
In  spite of this, these vortices have a similar degree of dominance of the flow, as 
measured by vorticity kurtosis (table 6). 

12. Rossby waves 
When B is non-zero in (4), Rossby waves can occur with finite phase speed, and 

there is a competition between linear wave propagation and dispersion and nonlinear 
advection and spectrum transfer. In  two-dimensional flow the major results of this 
competition are an arrest of the inverse cascade for k < k, (alternatively defined by 
different investigators as /3{uz +v2}-f or /3{6}-4, with a general weakening of nonlinear 
interactions in this range, and development of horizontal anisotropy a t  all k such 
that u > v due to straining by the large-scale flow (Rhines 1975; Herring 1975; 
Holloway & Hendershott 1977). A particular aspect of the competition relates to 
coherent vortex emergence (McWilliams 1984). For an initial or forcing wavenumber 
k,, vortices do not develop when k, 5 kp, but do so when k, > kp. If the vortices 
develop with a size close to k,, they will be later destroyed by wave dispersion, with 
an initial growth of kurtosis (as in figure 7)  followed by a collapse to  a Gaussian value. 
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However, if the emergent vortex scale is much smaller (k, + k,), vortices will persist 
in spite of dispersion and will limit the development of anisotropy. (Advective 
steepening can nearly cancel dispersive spreading in strongly nonlinear, isolated 
vortices with non-zero /3 (McWilliams & Flier1 1979).) 

In  geostrophic turbulence the competition with Rossby waves is very like that in 
two-dimension turbulence. To illustrate this, we define a horizontal anisotropy 
function A(k, p, t )  by 

T(k,p,t) =T,(k,p,t)[l-A(k,p,t)  C O S ~ ~ +  ...I (30) 

or dST(k,p,  t )  ~ 0 ~ 2 9 / T , ( k , p ,  t ) .  
- X / Z  

Here k and 9 are the polar coordinates for the horizontal wavenumber vector k, T 
is the total energy spectrum, To is its azimuthal average (note that T* from (24) is 
approximately equal to xkT,), and the dots in (30) denote additional azimuthal 
components in T. Positive A indicates anisotropy such that u > v. (Note that A is 
unchanged by replacing T by either the stream function or the potential-enstrophy 
spectrum.) 

Consider solution Z, which has /3 = 8 and k, = 16. If we use the definition 
kp = @(u2+v2)-i, then (k),/k, = 8.7 a t  t = 0. During the early time interval 
0 Q t Q 5, inverse cascade occurs, vortices begin to develop, Ku, grows, and the ratio 
(k),/kp decreases from 8.7 to 1.8. In  this phase, the spectrum-average anisotropy 
A(t) remains small (figure 16a). After t = 5, however, Ku, begins to decline towards 
3, A grows, and (k),/k, continues to decline towards approximately 1 ( A  = 1.1 and 
0.7 a t  t = 10 and 20 respectively). After t = 15, A is nearly unity, which is as large 
as it can be, consistent with a non-negative T-spectrum in (23). I ts  distribution with 
k is qualitatively the same as in two-dimensional turbulence (compare figure 1 6 b  
with figures 3-5 in Holloway & Hendershott 1977), and it is nearly independent of 
vertical wavenumber (figure 16c). Even though J($,f) dominates J($, p) in (1) only 
for the few smallest wavenumbers, anisotropy extends throughout the spectrum 
owing to advective straining of small-scale motions by anisotropic large-scale 
motions. 

It is also remarkable that, in spite of the great differences in A and Ku, values 
between solution Z and its counterpart with p = 0  (solution C), many other 
statistical measures are quite similar. For example, T(t) and V ( t )  never differ 
between the two solutions by more than a few percent over the interval [0,20]. 
However, there is a discernible arrest of the inverse cascade with 1: centroid p -  and 
$-values are larger in solution Z, especially for weighting functions emphasizing the 
larger scales (i.e. energy and stream-function spectra). 

When (k),/k, is initially somewhat larger (e.g. a value of 14.5 in solution AA), the 
evolution is strikingly different. ( k)*/k, still decreases monotonically with time 
(the inverse cascade), but is does not approach 1 until quite late, after the coherent 
vortices have become well developed and are able to resist dispersive decay. As a 
result, the rate of growth of Ku, diminishes, and Ku, finally levels off a t  a large non- 
Gaussian value (figure 17). Compared to a solution with /3 = 0 (solution L), the 
Kuc(t)-curve does not begin to differ significantly until (k),/kp drops below a value 
of about 3.0 around t = 8. In  solution AA, the value of A is only 0.15, averaged over 
k, p ,  and tE[15,20]. This degree of anisotropy is, of course, more than the A = 0 
value with /3 = 0, but it is still much smaller than the A x 1 value with /3 $. 0 but 
without persistent vortices. 
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FIGURE 16. Partial averages of the horizontal anisotropy function A ( k , p ,  t )  from (31) for solution 
Z .  The arguments being averaged over are indicated by subscripts; the time average is over 
t = 15-20. 
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13. Physical and computational limits to inverse cascade 
The preceding sections show that inverse cascade is a ubiquitous property of 

geostrophic turbulence when nonlinear advective processes dominate the flow 
evolution, and this occurs over broad but finite ranges of the physical and numerical 
parameters. Indicators of the inverse cascade are d(p)F/dt substantially negative 
and dT/dt only slightly negative. Here a brief summary is made of the known limits 
to the regime of inverse cascade. 

For the initial-value problems as posed in 332 and 3, with a time step small enough 
to prevent any computational instability or significant inaccuracy, inverse cascade 
will fail to occur for the following computational reasons: 
(a) v,, too small for a given N, (evolution towards modal equipartition ; see §6) ; 
( b )  N, too small (computational inaccuracy for nonlinear transfer and excessive 

dissipation in order to avoid (a) above) ; 
( c )  certain combinations of h,,,/k,,, from (26), A from (13), and p, and $, from 

(14) too large (probably computational inaccuracy for weak nonlinear transfer) ; 
(d) lack of conservation of both T and V in the numerical formulation of the 

Jacobian term in ( l ) ,  which can exacerbate the preceding circumstances (Arakawa & 
Lamb 1977 found this to be true for two-dimensional flow). 

Inverse cascade can also fail to occur for the following physical reasons: 
(i) p, in (14) too small (the small domain size prevents inverse cascade; see 

(ii) k, too large for a given N, and vh (dissipation dominates nonlinear transfer); 
(iii) any of vh, vy ,  or both E and A in (8) and (13) too large (excessive 

(iv) p too large (excessive wave influence; see $12). 

solution E in figure 6) ; 

dissipation) ; 
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14. Summary and discussion 
This paper reports on high-resolution, high-Reynolds-number numerical solutions 

of decaying geostrophic turbulence. A broad range of influences is examined, 
including anisotropy of viscosity and Ekman friction ; anisotropy, scale content, and 
vertical inhomogeneity in initial conditions ; strength of stratification and domain 
aspect ratio ; gradient in Coriolis frequency (p) ; and numerical parameters. 

These solutions exhibit inverse energy cascade, forward enstrophy cascade, three- 
dimensional isotropization, vertical inhomogeneity, substantial non-Gaussanity, and 
spontaneous development of coherent vortices. 

The cascade rates are largest a t  early times, and they are later reduced because of 
enstrophy depletion, finite domain size, coherent vortices, and Rossby waves. After 
several large-eddy circulation times, the energy and enstrophy spectra are 
approximately three-dimensional isotropic ; however, deviations occur a t  large scale 
because of the finite size of the domain, at intermediate scale because of a 
disequilibrium resulting from the relative slowness of nonlinear transfer for 
wavenumber vectors which are primarily vertical in orientation, and a t  small scale 
because of both the preceding influence and anisotropy of viscosity. Consequently, 
kinetic energy exceeds potential energy by more than the factor of two associated 
with equipartition, whereas the ratio of the stretching component of potential 
vorticity and the relative vorticity is larger than for a three-dimensional isotropic 
solution. The presence of solid, slippery, top and bottom boundaries enhances 
horizontal velocity and relative vorticity a t  the boundaries and diminishes stretching 
vorticity adjacent to them. However, when the boundaries exert a drag force 
(through an Ekman layer), the relative vorticity is locally diminished and stretching 
vorticity is enhanced. In general, vertical inhomogeneity is persistent in geostrophic 
turbulence. 

Overall, it is striking how important the processes of two-dimensional turbulence 
are in geostrophic turbulence. The energy and enstrophy cascades certainly have 
strong similarities in the two systems. The development of horizontal anisotropy, 
cascade arrest, and competition between Rossby waves and vortices when p is non- 
zero are also quite similar (see figure 16c in particular). The emergence of coherent 
vortices and t>heir intermittency and dominance of the flow evolution in the broad 
time interval between maximum enstrophy dissipation (around a large-eddy 
circulation time) and final viscous decay (at a time of order the inverse of Reynolds 
number) appear to be as important and fundamental in geostrophic turbulence as 
they are in two-dimensional turbulence. The limits to computable geostrophic 
turbulence (i.e. inverse cascade) listed in Q 13 are approximately coincident with 
limits to the emergence of coherent vortices. All of the two-dimensional vortex 
processes also occur in geostrophic flow, with important incremental effects due to 
vertical structure : finite vortex heights, vertical boundary effects and interactions 
between vortices centred a t  different levels (alignment, attachment, vertical straining 
deformation). 

Finally, a cautionary remark should be made, similar to one made in Charney 
(1971). The largest scales of motions in the ocean and atmosphere, while mostly 
gcostrophic in their momentum balance, differ in several important ways from the 
idealized geostrophic turbulence problem as posed here. There can be significant 
forcing of pianetary-scale motions, important non-uniformity in the lower boundary 
or (for the ocean) side boundaries, spatial non-uniformity in stratification strength, 
and greater constraint due to the limited height of the fluid and greater influence of 
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fi than in the cases examined here. The present problem, therefore, is more relevant 
to the smaller-scale geostrophic flows, under circumstances where the neglected 
larger-scale influences do not exert too great an influence on their evolution. 
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